Deltin 7

Deltin 7

Publications

Sl. Details
31

 (CHIKV) that causes chikungunya fever, is an alphavirus that belongs to the Togaviridae family containing a single-stranded RNA genome. Mosquitoes of the Aedes species act as the vectors for this virus and can be found in the blood, which can be passed from an infected person to a mosquito through mosquito bites. CHIKV has drawn much attention recently because of its potential of causing an epidemic. As the detailed mechanism of its pathogenesis inside the host system is still lacking, in this in silico research we have hypothesized that CHIKV might create , which would target the genes associated with host cellular regulatory pathways, thereby providing the virus with prolonged refuge. Using bioinformatics approaches we found several putative  produced by CHIKV. Then we predicted the genes of the host targeted by these . Functional enrichment analysis of these targeted genes shows the involvement of several biological pathways regulating antiviral immune stimulation, , and cell cycle, thereby provide themselves with prolonged refuge and facilitate their pathogenesis, which in turn may lead to disease conditions. Finally, we analyzed a publicly available microarray dataset (GSE49985) to determine the altered expression levels of the targeted genes and found genes associated with pathways such as cell differentiation, phagocytosis, T-cell activation, response to cytokine, autophagy, Toll-like receptor signaling, RIG-I like receptor signaling and apoptosis. Our finding presents novel  and their targeted genes, which upon experimental validation could facilitate in developing new therapeutics to combat CHIKV infection and minimize CHIKV mediated diseases.

Attachment
32

MicroRNAs play a crucial role in tumorigenesis, tumor progression, and metastasis, and thus they contribute in development of different malignancies including cervical cancer (CC) and colorectal cancer (CRC). Through integrated strategies of computational biology, this study aims to identify prognostic biomarkers responsible for CRC and CC prognosis, and potential therapeutic agents to halt the progression of these cancers. Expression analysis of miRNA datasets of CRC and CC identified 17 differentially expressed miRNAs (DEMs). SYNPO2NEGR1FGF7LIFRRUNX1T1CFL2BNC2EPHB2PMAIP1, and CDC25A differentially expressed genes (DEGs) regulated by these DEMs were classified as candidate genes responsible for CRC and CC. Down-regulation of Synaptopodin-2 (SYNPO2) is involved in emergence and progression of these cancers by activating ER, PI3K/AKT, and EMT pathways as well as by suppressing DNA damage response, and cell cycle pathways. Higher methylation rate in promoter region of SYNPO2 could be a possible reason for lowering the expression of SYNPO2 in tumor stages. Hence, the lower expression of SYNPO2 is associated with poor prognosis of CRC and CC and could function as prognostic biomarker and therapeutic target. Fourteen transcription factors were recognized which can activate/inhibit the transcription of SYNPO2 and may be a potential target to regulate expression of SYNPO2 in CRC and CC. Retinoic acid and Estradiol were identified as putative therapeutic drugs for CRC and CC patients. This study will thus help in understanding the underlying molecular events in CRC and CC that may improve the detection of malignant lesions in primary screening and will broaden the clinical applications.

Attachment
33

A new strain of the beta coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is solely responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic. Although several studies suggest that the spike protein of this virus interacts with the cell surface receptor, angiotensin-converting enzyme 2 (ACE2), and is subsequently cleaved by TMPRSS2 and FURIN to enter into the host cell, conclusive insight about the interaction pattern of the variants of these proteins is still lacking. Thus, in this study, we analyzed the functional conjugation among the spike protein, ACE2, TMPRSS2, and FURIN in viral pathogenesis as well as the effects of the mutations of the proteins through the implementation of several bioinformatics approaches. Analysis of the intermolecular interactions revealed that T27A (ACE2), G476S (receptor-binding domain [RBD] of the spike protein), C297T (TMPRSS2), and P812S (cleavage site for TMPRSS2) coding variants may render resistance in viral infection, whereas Q493L (RBD), S477I (RBD), P681R (cleavage site for FURIN), and P683W (cleavage site for FURIN) may lead to increase viral infection. Genotype-specific expression analysis predicted several genetic variants of ACE2 (rs2158082, rs2106806, rs4830971, and rs4830972), TMPRSS2 (rs458213, rs468444, rs4290734, and rs6517666), and FURIN (rs78164913 and rs79742014) that significantly alter their normal expression which might affect the viral spread. Furthermore, we also found that ACE2, TMPRSS2, and FURIN proteins are functionally co-related with each other, and several genes are highly co-expressed with them, which might be involved in viral pathogenesis. This study will thus help in future genomics and proteomics studies of SARS-CoV-2 and will provide an opportunity to understand the underlying molecular mechanism during SARS-CoV-2 pathogenesis.

Attachment
34

In humans, the dimeric receptor complex IFNAR2-IFNAR1 accelerates cellular response triggered by type I interferon (IFN) family proteins in response to viral infection including Coronavirus infection. Studies have revealed the association of the IFNAR2 gene with severe illness in Coronavirus infection and indicated the association of genomic variants, i.e. single nucleotide polymorphisms (SNPs). However, comprehensive analysis of SNPs of the IFNAR2 gene has not been performed in both coding and non-coding region to find the causes of loss of function of IFNAR2 in COVID-19 patients. In this study, we have characterized coding SNPs (nsSNPs) of IFNAR2 gene using different bioinformatics tools and identified deleterious SNPs. We found 9 nsSNPs as pathogenic and disease-causing along with a decrease in protein stability. We employed molecular docking analysis that showed 5 nsSNPs to decrease binding affinity to IFN. Later, MD simulations showed that P136R mutant may destabilize crucial binding with the IFN molecule in response to COVID-19. Thus, P136R is likely to have a high impact on disrupting the structure of the IFNAR2 protein. GTEx portal analysis predicted 14 sQTLs and 5 eQTLs SNPs in lung tissues hampering the post-transcriptional modification (splicing) and altering the expression of the IFNAR2 gene. sQTLs and eQTLs SNPs potentially explain the reduced IFNAR2 production leading to severe diseases. These mutants in the coding and non-coding region of the IFNAR2 gene can help to recognize severe illness due to COVID 19 and consequently assist to develop an effective drug against the infection.

Attachment
35

Cancer stem cells (CSCs) are a specific type of cancer cell that can both self-renew and differentiate, playing a key role in cancer development and progression. Existing clinical biomarkers, however, are insufficient as robust biomarkers to be used in clinical practice for cancer patients due to their limited confirmation and contested prognostic relevance. Therefore, there is a large pool of potential biomarkers that have not been thoroughly explored. CSC surface biomarkers have recently been the focus of many studies in the clinical practice of cancer patients due to their potential utility in characterising the aetiology of cancer initiation, development, and metastasis. In this chapter, we discuss the most popular surface biomarkers of CSCs and provide their potential utility in cancer diagnosis and prognosis.

Attachment
36

Nanobodies (Nbs) are great molecular tools that can circumvent the limitations of traditional antibodies such as large size, low stability, slow clearance, and high immunogenicity. Recent studies identified several clinical applications of Nbs targeting various cancers. Cancer stem cells (CSCs) comprise a limited subpopulation of cancer cells that can reproduce autonomously and differentiate into diverse cancer lineages. CSCs are responsible for providing resistance against chemotherapy and radiotherapy. Various studies focused on targeting these CSCs via Nbs to selectively reduce the cancer burden. Nbs have the potential to reduce the CSCs and thereby could halt the progression of specific cancers.

Attachment
37

Combination strategies of KRAS inhibition with immunotherapy in treating advanced or recurrent colorectal carcinoma (CRC) may need to be assessed in circulating tumour cells (CTCs) to achieve better clinical outcomes. This study aimed to investigate the genomic variations of KRAS in CTCs and matched CRC tissues and compared mRNA expression of KRAS and CTLA-4 between wildtype and KRAS-mutated CTCs and CRC tissues. Clinicopathological correlations were also compared. Six known mutations of KRAS were identified at both codon 12 and codon 13 (c.35G>T/G12V, c.35G>A7/G12D, c.35G>C/G12A, c.34G>A/G12S, c.38G>C/G13A, and c.38G>A/G13D). Three CTC samples harboured the identified mutations (16.7%; 3/18), while fifteen matched primary tumour tissues (65.2%, 15/23) showed the mutations. CTCs harbouring the KRAS variant were different from matched CRC tissue. All the mutations were heterozygous. Though insignificant, CTLA-4 mRNA expression was higher in patients carrying KRAS mutations. Patients harbouring KRAS mutations in CTCs were more likely to have poorly differentiated tumours (p = 0.039) and with lymph node metastasis (p = 0.027) and perineural invasion (p = 0.014). KRAS mutations in CTCs were also significantly correlated with overall pathological stages (p = 0.027). These findings imply the genetic basis of KRAS with immunotherapeutic target molecules based on a real-time platform. This study also suggests the highly heterogeneous nature of cancer cells, which may facilitate the assessment of clonal dynamics across a single patient’s disease.

Attachment
38

Serving as the interface between fetal and maternal circulation, the placenta plays a critical role in fetal growth and development. Placental exosomes are small membrane-bound extracellular vesicles released by the placenta during pregnancy. They contain a variety of biomolecules, including lipids, proteins, and nucleic acids, which can potentially be biomarkers of maternal diseases. An increasing number of studies have demonstrated the utility of placental exosomes for the diagnosis and monitoring of pathological conditions such as pre-eclampsia and gestational diabetes. This suggests that placental exosomes may serve as new biomarkers in liquid biopsy analysis. This review provides an overview of the current understanding of the biological function of placental exosomes and their potential as biomarkers of maternal diseases. Additionally, this review highlights current barriers and the way forward for standardization and validation of known techniques for exosome isolation, characterization, and detection. Finally, microfluidic devices for exosome research are discussed.

Attachment
39

Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, such as extracellular vesicles (exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.

Attachment
40

Detection of KRAS mutation in colorectal cancer (CRC) is important in the prediction of response to target therapy. The study aims to develop a novel mutation detection platform called the “PNA-LNA molecular switch” for the detection of KRAS mutation in CRC. We employed the enhanced binding specificity of peptide nucleic acid (PNA) and locked nucleic acid (LNA) in conjunction with a loop-mediated isothermal amplification (LAMP) approach to identify the mutation status of KRAS oncogene codon 12 (c.35G>T/G12V and c.35G>A/G12D) using synthetic oligonucleotides and colon cancer cell lines (Caco-2 and SW480). This method specifically blocked the amplification of the wild-type sequences while substantially amplifying the mutated ones, which was visualized by both colorimetric and fluorescence assays. We then checked the mutation profile of KRAS codon 12 in the DNA derived from tumor tissue samples (number of samples, n = 30) and circulating tumor cells (n = 24) from CRC patients. Finally, we validated the results by comparing them with the data obtained from DNA sequencing of colon tumors (n = 21) of the same CRC patients. This method showed excellent sensitivity (1 DNA copy/µl), reproducibility [relative standard deviation (%RSD) < 5%, for n=3], and linear dynamic range (1 ag/μl-10 pg/μl, R2 = 0.94). This platform is significantly faster, relatively cheaper, has superior sensitivity and specificity, and does not require any high-end equipment. To conclude, this method has the potential to be translated into clinical settings for the detection of mutations in diverse diseases and conditions.

Attachment