
Phys. Scr. 99 (2024) 055247 https://doi.org/10.1088/1402-4896/ad3c78

PAPER

Abundant optical soliton solutions to the fractional perturbed Chen-
Lee-Liu equation with conformable derivative

Aminul Islam ,Md. Sagib ,Md.MamunurRashid andMd.AlAmin
Department ofMathematics, HajeeMohammadDanesh Science andTechnologyUniversity, Dinajpur-5200, Bangladesh

E-mail: sagib.mat@tch.hstu.ac.bd

Keywords: improved tanhmethod, perturbedChen-Lee-Liumodel, conformable derivative, optical soliton

Abstract
This research focuses on the space-time fractional nonlinear perturbedChen-Lee-Liumodel, which
describes the propagation behavior of optical pulses in the fields of optical fiber and plasma. The
equation is consideredwith respect to the conformable derivative, and a composite fractional wave
transformation is employed to reformulate it into a nonlinear equationwith a single variable. The
improved tanhmethod has been applied to derive novel analytical wave solutions for the given
equation. Consequently, various types of solitonic wave patterns emerge, including but not limited to
periodic, bell-shaped, anti-bell-shaped, V-shaped, kink, and compacton solitonic structures. The
acquired solutions could potentially aid in the analysis of signal transmission in optical fibers and the
characterization of plasma properties. The physical interpretations of the solutions are investigated
using three-dimensional surface plots and two-dimensional density plots. Additionally, combined
two-dimensional plots are being used to discuss the effects of the order of the fractional derivative on
the generatedwave patterns.Moreover, this study demonstrates the efficacy and reliability of the
chosen technique.

1. Introduction

Many scientists in the illustrious age of scientific progress and technological innovation employed fractional
order nonlinear partial differential equations (FNPDEs) to analyze intricatemathematicalmodels that arise in
thefields of plasma physics, opticalfibers, fluid dynamics, quantummechanics, neuroscience, robotics, and
others. Therefore, in order to overcome the initial obstacles, it is rational to identify thewave solutions obtained
through the analysis of thesemodels and provide a theoretical description of the phenomenon. The
mathematical solutions forwaves obtained through analyticalmethods of the FNDEs facilitate the investigation
of complicated topicsmore successfully than the solutions of equations with integer orders. Russell found the
longwavewithin theUnionCanal in 1834.He discovered that a solitarywave could travel a great distances while
maintaining an unchanging configuration and velocity. The acquisition of soliton solutions for important
equations is now a highly researched field among academics. A number of scholars have provided justification
for a variety of sophisticatedmethods to investigate soliton solutions, including theHirota’s process [1], the
sine-Gordon expansion technique [2, 3], thefirst-integral approach [4, 5], the auxiliary equation technique
[6, 7], the sine-cosine scheme [8, 9], and the generalizedKudryashov procedure [10, 11], the ( )¢G G -expansion
approch [12, 13], the extended tanh-function scheme [14, 15], thef6-model expansionmethod [16], the Jacobi-
elliptic function expansion technique [17, 18], the exponent function process [19], the ( )¢G G G, 1 -expansion
method [20, 21], the generalized ( )¢G G -expansion technique[22], themodified extended tanh-function
method [23, 24], andmany others.

The transmission of short pulses infiber optic cables is a highly intriguing subject that attracts both
experimental and theoretical research. The fundamental aspects of this phenomenon are elucidated through the
nonlinear Schrödinger equation (NSE). The quest for soliton solutions of theNSE has emerged as a prominent
subject across diverse scientific domains, including signal propagation throughfiber optic cables, plasma
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physics, and quantummechanics [25]. TheNSE, alongwith its diversemodifications, serves as a foundational
model for investigating the dynamics of sub-microscopic particles like photons and revealing the impacts of
higher-order nonlinear effects in real-world physical systems [26]. For instance, the nonlocal Kundu-NSE,
which arises in nonlocal symmetry, is amodification ofNSE and is utilized formodelingwave propagation in
dispersivemedia [27]. Again, derivative nonlinear Schrödinger (DNS) type equations have significant
applications in plasma physics and nonlinear optics, such as themixedChen-Lee-LiuDNS equation, which can
depict the transmission of localized structures within the nonlinear dispersivemedium [28].

Variousmodels describe the dynamics of soliton propagation via optical waveguides, encompassing fibers,
optical couplers,meta-materials, and other structures. One notablemodel among these is the nonlinear Chen-
Lee-Liu (CLL) equation, which garners significant attention in nonlinear optics research. TheCLL equation
characterizes the behavior of light propagation in nonlinear optical fibers and can alsomanifest in optical
couplers,meta-materials, and optoelectronic devices [29]. Since the inception of theCLL equation, numerous
scholars have proposed and investigated various iterations of this equation. Among these iterations, the integer-
ordered perturbedCLL equation [29] takes the subsequent structure:
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The perturbedCLL equationfinds utility across various domains, ranging from investigating optical soliton
behavior and analyzing the nonlinear interactionswithin fiber optic cables for the development of control
systems resilient tominor disturbances and examining the stability and features for chaotic systems.Moreover,
in the realmof plasma physics, this equation serves as a tool to explore electromagnetic wave propagation,
nonlinear dynamics of wave-particle interactions, and contributes to advancements in scientific endeavors
leveraging plasma technologies [30]. The soliton solutions of CLL equation and its variousmodificationswere
studied by several researchers through different approaches, such as the generalized exponential rational
functionmethod [31], the enhancedKudryashov’s [32], themodified extended auxiliary equationmapping
method [33], the extended simplest equationmethod [34] and others [35, 36].

The solitary wave solutions of the perturbed space-time fractional nonlinear Chen-Lee-Liu equation are
investigated form= 1 in this research [25]:

∣ ∣ [ (∣ ∣ ) ( (∣ ∣ )) ] ( )a b h g k s+ + = + + <s s s s s siD q D q i q D q i D q D q q D q q , 0 1. 1.2t xx x x x x
2 2 2 2

In equation (1.2), ( )=q q x t, is the complexwave function of spatial and temporal variables x and t respectively,
α is the dissipation coefficient,β andκ are nonlinear dispersion coefficients, η is the coefficient of intermodel
dispersion , γ is the parameter of shelf-stepping. σ is the order of the conformable fractional derivative which lies
between (0, 1]. It can elucidate the evolution and interactions of pulses as they propagate within a given interval,
illustrating hownonlinear phenomena and other influences give rise to diverse wave patterns over time at each
locationwithin the specified interval.

The soliton solutions of equation (1.2) have garnered considerable attention fromacademics in recent years
due to its profound influence onfiber optic cable and plasma physics. Until now, only a few studies have been
conducted on the space-time fractional perturbed nonlinear CLL equation.Martínez et al [25] obtained
analytical soliton solutions for themodel (1.2) using themodified exp ( ( ))f x- -expansion functionmethod by
introducing a new local fractional derivative. Khatun andAkbar [30] used ( )¢G G G, 1 -expansionmethod to
derive some new optical solitons for theCLL equation (1.2)withAtangana’s beta derivative. The beta fractional
perturbedCLLmodel was studied by Tripathy and Sahoo [37] to study the distinct optical solutions.
Furthermore, new optical solitons of the perturbedCLL equation in conjunctionwith a novel local fractional
derivative were derived byOuahid et al [38].

Fractional calculus is currently widely used to explore novel properties of solitons.More appropriate analysis
of physical phenomenawith higher degrees of freedom is possible using fractionalmodels. This approach
significantly impacts the formation of solitonswith various shapes and high intensities. Researchers are
currently engaged in the exploration of fractional calculus, where they are developing novel operators including
the Riemann-Liouville, Caputo, Atangana Baleanu andCaputo Fabrizio derivatives. Among these, the
conformable fractional operator emerges as a promising advancement, addressing certain limitations inherent
in existing fractional operators. It exhibits qualities akin to traditional calculus, facilitating operations such as the
derivative of a quotient of functions, chain rule, and the product of functions, as well as principles like themean
value theorem andRolleʼs theorem. The application of the conformable derivative is characterized by its
simplicity and effectiveness, offering insights into the behavior of various physical phenomena. Particularly
beneficial in tackling complexmodels, this derivative enhances convenience inmodeling numerous physical
problems. Differential equations involving the conformable fractional derivative are notably easier to solve
compared to those involving theCaputo or Riemann-Liouville fractional derivative, underscoring its utility and
versatility in scientific inquiry.
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To the extent of our understanding, the improved tanhmethod [39, 40] has not been employed yet in
investigating the space-time fractional perturbedCLL equation alongside the conformable derivative [41].
Therefore, the goal of this study is to utilize the improved tanhmethod to uncover novel findings for the
aforementioned equation. Consequently, numerous new exact travelingwave solutions, such as periodic, bell-
shaped, V-shaped, anti-bell-shaped, kink, and compacton, employing diverse sets of free parameters, have been
obtained. Furthermore, wewill observe that varying the order of the conformable derivative can alter the
dynamics of solitonwaves, providing additional insights into propagatingwaves. Additionally, non-regular
oscillatory phenomenawill be observed in the conformable fractionalmodel (1.2) compared to its integer case.
For the above results and the simplicity of the conformable fractional derivative, we aremotivated to analyze the
model (1.2) in the sense conformable derivative. One of the advantages of the proposedmethod over alternative
approaches is its capability to yield a greater number of arbitrary constants and various types of solutions. In
addition to its fundamental application, it also assists numerical solvers in verifying the accuracy of their results
and facilitates stability analysis.

The remainder of the documentwill be structured as follows: section 2 represents themethodology and
features of the conformable derivative. Section 3 introduces the implementation of the improved tanh
technique. Section 4 provides a concise discussion accompanied by graphical illustrations. In section 5, we
present a comparison between our extracted solutions and existing literature, and lastly, conclusions are drawn
in section 6.

2. Preliminaries andmethodology

2.1. Conformal derivative
The conformable fractional order derivative of ( )zq is given by
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Suppose that the functions ( )z=q q and ( )z=r r areσ-differentiable at ζ> 0with ( ]s Î 0, 1 , then the
conformable derivative [41] satisfies the following properties:
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2.2. The improved tanhmethod
Consider the fractional order nonlinear partial differential equationwith unknown function

( )q x x x x t, , , , ,n1 2 3 as:

( ) ( )aF = <a a a a q D q D q D q D q, , , , , 0, 0 1, 2.1t x tt x x
2 2

1 1 1

whereΦ represent a polynomial in q and its all fractional order partial derivatives. Take travelingwave
transformation for real equations as follows:

( ) ( ) ( ) ( )z z z= = = q q x x x x t Q x x x x t, , , , , , , , , , , , 2.2n n1 2 3 1 2 3

or define travelingwave transformation for complex equation as:

( ) ( ) ( ) ( ) ( )z z z q q= = = =q  q q x x x x t Q e x x x x t x x x x t, , , , , , , , , , , , , , , , , . 2.3n
i

n n1 2 3 1 2 3 1 2 3

The equation (2.1)with the help of (2.2) is turned into the ordinary differential equation as:

( ‴ ) ( )F ¢  =Q Q Q Q, , , , ... 0, 2.4

where primes inQ define the order of derivative due to the variable ζ. Differentiating (2.4) asmuch as needed
and set the constants of integration equal to zero for adopting soliton solutions. The improved tanh technique
suggests us to adopt the formof solution as:
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where the constant ιi, τj, òi, and ( )e = i j N, 0, 1, ,j are determined later and ( )zW satisfies the auxiliary
equation,

( ) ( ) ( )z d zW¢ = + W . 2.62

The equation (2.5) gives the following group of solutions.
Solution group I: when δ< 0

( ) ( ) ( )z d d zW = - - -tanh 2.7

( ) ( ) ( )z d d zW = - - -coth 2.8

Solution group II: when δ= 0

( ) ( )z zW = -1 2.9

Solution group III: when δ> 0

( ) ( ) ( )z d d zW = tan 2.10

( ) ( ) ( )z d d zW = - cot 2.11

When (2.5) and (2.6) are used in (2.4), it becomes a polynomial inΩ, and equating the coefficients ofΩ to zero
produces a set of algebraic equations. These equations can be solved for unknown parameters by using any
computational software. Substituting the the values of unknown parameters alongwith the solution of (2.6) in
(2.5), we obtain the analytical wave solutions of (2.1).

3. Extraction of soliton solutions

Assume that thewave variable transformation is defined by
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With the help of the transformation (3.1), the CLLmodel (1.2) can be transformed into the subsequent complex
nonlinear equation:
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Equating the real and imaginary parts fromboth sides of the equation (3.2), we respectively reached at

( ( )) ( ) ( ) ( ) ( ) ( )a h z g b z a z- - - + - +  =b a a Q aQ c Q 0 3.33 2

and

( ) ( ) ( ) ( ) ( ) ( )a h z b g k z z+ - ¢ + - - ¢ =d ac c Q cQ Q2 3 2 0. 3.42

Taking integration on (3.4), the following results are yielded:

( )a h b g k= - + = +d ac c2 and 3 2 3.5

Then the equation (3.3) is expected to be solved. Applying the principle of homogeneous balance in
equation (3.3) providesN= 1. Therefore, the assumed solution of equation (3.3) can bewritten in the following
form:
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Now, using (3.6) and its necessary derivatives in (3.3) provides a polynomial in ( )zW . Then, collecting the
coefficients of different powers ofQ and then set them to zero gives us a systemof algebraic equations. Solving
the obtained systemusingmathematical softwareMAPLE offers us seven sets of solutions. These solution sets
and their corresponding contributions to the unknown function q(x, t) are explained below.
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Agreeing to this set, we get the exact solution of equation (3.3) alongwith the considering solution (3.6) as:

( )
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Q

c

a
. 3.7

If the solution obtained by the improved tanhmethod for ( )zW of the solution group I, i.e. when δ< 0,
introduce ( ) ( )z d d zW = - - -tanh in equation (3.7), and takes necessary simplification, the following
soliton solution is obtained:
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s s
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c ac c2x t .

Now, substituting ( )zQ in equation (3.1), our required analytical solution of the fractional perturbedCLL
nonlinear equation (1.2) by the improved tanhmethod is
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By performing a similar process as in (3.9), we obtain other solutions of this set as:
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Considering this set, using the same process executed for set 1, the solutions for this set are:
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Corresponding to this set, thewave solutions are:
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For this set, we have:
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With this set, we proceed as:
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So, the exact solutions for this set are:
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where, ( ) ( ) ( )d z d z a d a h¡ = - P = - Q = + - +
s s

s s
a c a atanh , coth , 2x t2 2

and ( )z a h= + - +
s s

s s
c ac c2x t .
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Therefore, we get the subsequent analytical solutions:
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where ( )a d a hQ = + - - +
s s

s s
a c a a4x t2 2 and ( )z a h= + - +

s s

s s
c ac c2x t .

4. Results and discussionwith graphical representations

The improved tanhmethod has been effectively employed to attain optical soliton solutions for the perturbed
CLL equation. The graphical depictions of wave solutions play a crucial role in elucidating the internal dynamics
of complex nonlinear phenomena. In this section, wewill explore the characteristics of the travelingwave
solutions derived from theCLL equation.Wewill also examine various types of solitons and their corresponding
physical behaviors. Additionally, we have generated 3D, 2D and density plots usingMATLAB to visually
represent these concepts.

The imaginary part of the solution (3.9) represents a periodic soliton, as shown infigure 1, forσ= 0.9,
a=0.5, c= 4, δ=− 0.5,α=− 0.04, γ= 1, η= 2 andκ=− 2. The corresponding density plot of the soliton is
depicted infigure 1(b). Fromfigure 1(c), it can be observed that the solitonmaintains its shapewhile changing its
positionwith increasing values of the temporal variable.

Figure 2 depicts the configuration of the real slice of the solution (3.10) for specific parameters:σ= 0.99,
a=− 0.324, c= 2, δ=− 1,α=− 0.05, γ=− 2, η= 2.93 andκ=− 3. It is observed from the figure that the
solution describes a compacton.However, as the value ofσ decreases, the solution transforms into another
soliton (see figure 2(c)).

The behavior of themodulus of the solution (3.13) characterizes a bell-shaped soliton under specific
conditionswhereσ= 0.999, a= 0.51, c= 1.12, δ=− 0.5,α= 0.5, γ=− 0.2, η= 0.3 andκ=− 0.3. The
corresponding density plot of the soliton is illustrated infigure 3(b). Figure 3(c) reveals that the soliton preserves
its shapewhile shifting its position to the right as time increases.
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The absolute value of the solution (3.32) is depicted for specific values:σ= 0.9, a=0.05, c=− 0.02,
δ=− 0.5,α=− 0.05, γ=− 0.02, η= 0.083,κ=− 0.003, ι1= 0.03 and ò1=− 0.001, as illustrated infigure 4.
This solution exhibits a bell-shaped soliton characteristic for the given parameter values. Additionally, it can be
noticed fromfigure 4(c) that lessening the value ofσ leads to a spike at the bottom end of the soliton.

Figure 1. (a) 3D surface plot, (b) density plot and (c) 2D combined plots of imaginary portion of (3.9).

Figure 2. (a) 3D surface plot, (b) density plot and (c) 2D combined plots of real slice of (3.10).

Figure 3. (a) 3D surface plot, (b) density plot and (c) 2D combined plots of themodulus of (3.13).

Figure 4. (a) 3D surface plot, (b) density plot and (c) 2D combined plots of themodulus of (3.32).
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The absolute value of the solution (3.33) is portrayed infigure 5, which has been generated using appropriate
parameters:σ= 0.999, a=− 0.2, c= 0.5, δ=− 1,α= 3, γ= 1, η= 1,κ= 1, ι1= 1 and ò1= 1. Furthermore,
from the combined 2Dplots infigure 5(c), we observe that a slight variation inσ leads to a significant alteration
in thewave profile, resulting in structural breakage and the presence of singularities.

Figure 6 displays the configuration of themodulus of solution (3.37), with appropriate parameter values:
σ= 0.6, a= 5, c=0.001, δ=− 0.0004,α= 0.75, γ=− 0.1, η=− 1,κ=− 0.03, ι1= 0.0085 and ò1=− 10.
Thefigure portrays a kink soliton having non-smoothness at upper part. It is noteworthy from figure 6(c) that
the solution (3.37) tends to lose its smoothness in the lower part as the value ofσ decreases.

4.1. Effects of fractional derivative order
In this subsection, we have visualized how the fractional derivative order affects the solutions by plotting 3D and
2Dgraphs of the obtained solutions for various values ofσ. By delving into the examination of the influence ofσ,
we aim to offer valuable insights into the dynamics of waves.

Figure 7 is portrayed for appropriate values of a=0.5, c= 4, δ=− 0.5,α=− 0.04, γ= 1, η= 2,κ=− 2,
which displays the physical characteristics of imaginary slice of the solution (3.9).Whenσ= 1, solution (3.9)
exhibits a periodic soliton.However, decreasing the value ofσwill cause thewavelength to broaden, and at
σ= 0.3, it will no longer qualify as a periodic soliton. Again, fromfigures 7(d) and (e), it can be observed that the
wave exhibits non-regular oscillatory behavior forσ= 0.7, whereas this behavior does not occur for the integer
case, i.e., whenσ= 1.

Figure 8 depicts the physical feature of themodulus of solution (3.13) for appropriate parameter values:
a=0.51, c=1.12, δ=− 0.5,α= 0.5, γ=− 0.2, η= 0.3 andκ=− 0.3. Forσ= 1, the solution (3.13) represents a
bell-shaped (bright) soliton.However, as the value ofσ decreases, the soliton tends to lose its smoothness, and at
σ= 0.3, the solution becomes a singular bell soliton. Figures 8(e) and (f) are the corresponding contour plots of
8(b) and (c), respectively. Contour plots provide a visual representation of complexwave data, allowing us to
quickly grasp the spatial distribution and variation of wave parameters such as amplitude, frequency, and phase.

Analogously, the influence of fractional derivative order on alternative solutions can be demonstrated in a
similarmanner. It can be observed that the effect on the propagating waves increases with the decreasing order of
the fractional derivative. This characterization provides comprehensive information about these propagating
waves, resulting in a significant enhancement in various related applications.

Figure 5. (a) 3D surface plot, (b) density plot and (c) 2D combined plots of the absolute value of (3.33).

Figure 6. (a) 3D surface plot, (b) density plot and (c) 2D combined plots of themodulus of (3.37).
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5. Results’ comparison

Various researchers have explored theChen-Lee-Liumodel using differentmethods, as discussed earlier in the
introduction section. In this section, wewill compare the solutions obtained for theCLL equationwith those
presented byMartínez et al [25].Martínez et al. applied themodified exp ( ( ))f x- -expansion functionmethod
(MEFM) to the fractional perturbedChen-Lee-Liu nonlinear equation and obtained trigonometric and
hyperbolic solutions similar to those obtained by our proposed technique. Again, we obtained seven sets of
solutions, whereasMartínez et al obtained only three sets by considering different cases. Furthermore, based on
our obtained analytical solutions and those given byMartínez et al [25], wemake a comparisonwhich is
demonstrated in table 1.Hence, it becomes evident that some of the acquired solutions alignwith those from
previous studies under suitable configurations of arbitrary parameters, while others are novel and standard.
Moreover, the fundamental structures of the resulting solutions, delineated through thismethod, are
comprehensive.

Figure 7. (a) 3D surface plot forσ = 1, (b) 3D surface plot forσ = 0.7, (c) 3D surface plot forσ = 0.3, (d) 2Dplots forσ = 1, (e) 2D
plots forσ = 0.7 and (d) 2D combined plots of the imaginary portion of solution (3.9).

Figure 8. (a) 3D surface plot forσ = 1, (b) 3D surface plot forσ = 0.7, (c) 3D surface plot forσ = 0.3, (d) 2D combined plots, (e)
contour forσ = 0.7 and (f) contour forσ = 0.3 of the absolute value of solution (3.13).
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6. Conclusion

In this investigation, utilizing the suggested improved tanhmethod and the definition of conformable
derivative, we have successfully achieved and symbolically derived numerous new exact travelingwave solutions
to the space-time fractional nonlinear perturbedChen-Lee-Liu equation. The suggested approach is highly
efficient, reliable, and potent. It eliminates the need for linearization, perturbation, initial conditions, and
boundary conditions, thereby underscoring one of its key advantages.We have uncovered closed-form solutions
for thementioned equation, alongwith configurations such as periodic, bell-shaped, anti-bell-shaped,
V-shaped, kink, and compacton, employing diverse sets of free parameters. These findings are illustrated
through 3-D, density, and 2-Dplots. It is noteworthy that the accuracy of all derived solutions is verified by
directly substituting themback into the original equations. The referencedCLL equation holds importance in
both communication through opticalfibers and the study of plasma physics. The obtained solutions could offer
significant assistance, and the approach considered heremay be utilized in future research to identify solitary
wave solutions for nonlinear problems that arise in theoretical physics, appliedmathematics, and other areas of
non-linear sciences.
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